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1. Introduction 

The NWE-REGENERATIS project aims to develop new approaches to characterize past 

metallurgical sites and deposits (PMSD) by combining field geophysical measurements with 

geochemical and geophysical analyses of samples. Figure 1 presents the methodology 

workflow applied to build the RADMs of the project sites. The objective is first to provide a 

characterization of the site with geophysical field measurements. This characterization is 

used to define the location of the samples. These samples are positioned in order to validate 

the geophysical interpretations with direct field data. They are therefore positioned in 

sectors with varied geophysical properties. The geochemical measurements then allow the 

identification of the composition of the samples to be compared with the geophysical results.  

 

Figure 1 - Main steps of the suggested workflow on how to use geophysical techniques to build a RADM. 

To improve this comparison, geophysical measurements can be made directly on the 

samples in order to limit the errors related to the difference in scale of geochemical and 



geophysical measurements in the field. From these different measurements, a RADM can be 

built using statistical processing tools. 

The purpose of this report is to present the stages of RADM construction for each of the 

investment sites: (1) Teesside in England; (ii) Pompey in France; and (iii) Duferco in Belgium. 

For each site, the historical, geophysical and geochemical data available or acquired are first 

summarized. For more information, the reader can refer to the project deliverables on site 

characteristics [D.I.1/2/3.1.1] ; geophysical surveys [D.I.1/2/3.2.1] ; and sampling 

investigations [D.I.1/2/3.2.2]. Then, the methodology developed for each site is presented in 

order to detail the results and extract the necessary information for the regeneration of the 

site. 

  



2. WP Investment site n°1: Teesside (Uk) 

2.1. Teesside site presentation 

The South Tees Development Corporation [STDC] site is a large site (1500 ha) with a 160-year 

history of iron and steel production and the processing of finished products. The site has 

been used, at varying periods, for the storage of feedstock, products, by-products, and waste 

streams. The specific site selected for NWE-REGENERATIS project is called CLE31. It is mostly 

comprised of deposited slag materials, though various pieces of scrap materials were also 

noted. Vegetation growth existed in some areas within the CLE31 zone. Whilst much of the 

zone was flat and accessible, there were some piles and evidence that the deposits were not 

fully secure, likely due to the layers of the slag and air pockets as a result. 

In May 2002, the BRGM and ULiege team used several methods during the geophysical 

survey:  

- 3 mapping methods: electromagnetic induction, magnetic and magnetic 

susceptibility;  

- 2 profiling methods: electrical resistivity and induced polarization tomographies. 

- 17 soil samples were collected in the first centimeters of the landfill. 

 

Figure 2: (A) Map of the site with EMI, ERT and IP geophysical acquisitions and the sampling locations. (B) photography 

of the ERT/IP instrument in the field. (C) surface sampling in CLE31 site. 



This first sampling survey was conducted in order to have first ideas of the geochemistry of 

the deposits, while waiting for a more extensive sampling survey. All the geophysical 

methods, except the magnetic susceptibility measurements have limited sensitivity at the 

surface, and up to a few centimeters, of the ground. Deeper samples, collected through 

drilling, would thus be more interesting to compare to the geophysical datasets.  However, 

due to time and environmental issues, the drilling survey to provide deeper samples could 

not take place during the time of the NWE-REGENERATIS project. The geophysical 

interpretations available at Teesside CLE31 site are thus limited to qualitative ones. The 

geophysical dataset will only be analyzed as resistive/conductive and more or less 

chargeable layers. At the end, we propose interpretation which need to stay hypothetical 

without any deeper ground truth. 

2.2. Field data processing methodology 

 

Figure 3: 3D view of the 5 resistivity (A) and chargeability (B) profiles covered by the digital surface model. 



After the survey, several processing scheme of EMI data has been tested. They unveil the 

limit of the method on this site. The in-phase signal, partially linked to magnetic susceptibility, 

is highly variable and the apparent conductivity is negative in several areas. According to 

that, only qualitative interpretations have been proposed in the report DI1.2.1. Here, we then 

focus on ERT and IP models as they appear to be the more reliable measurement on this 

site.  

After the standard analysis of ERT/IP data (filtering + error modelling), the datasets have been 

inverted in 2D using pyGIMLI software. This inversion provide a resistivity and chargeability 

2D model for all profiles (Figure 3).  

The resistivity and chargeability data estimated are then combined in a unique dataset. An 

agglomerative hierarchical clustering is used on the combined datasets to define clusters. 

The clusters gather closest data point in the resistivity / chargeability space (Figure 4).  

 

Figure 4: 3 clusters in the resistivity / chargeability space. 

2.3. Raw materials distribution model 

Thanks to the clustering approach, we obtain three clusters which can be represented in 3D 

(Figure 5).  

The cluster n°0 (in yellow) is characterized by lower resistivity and chargeability. This cluster 

is mainly localized in the bottom part of the profiles and at the northern part of the site, 

characterized by more vegetation. According to these elements, this cluster might be related 

with natural ground and/or human limons/clay deposits to stabilize and/or divide the landfill. 



The cluster n°1 (in blue) is characterized by higher resistivity and low chargeability. Localize 

above the cluster one it is the main component of the land slide. Cluster n°2 (in green) is 

characterized by the same high resistivity but with larger chargeability. Cluster n°2 is mainly 

embedded within the cluster n°1. According to these characteristics, we could consider that 

cluster n°1 (in blue) is related to anthropogenic deposits with low chargeable components. 

This lower chargeability might be related to lower metal contents.  

The cluster n°2 (in green) is characterized by higher chargeability possibly related to metal 

contents. This cluster could be related to higher metallic contents parts of the slag.   

 

Figure 5: 3D view of the 3 geophysical clusters on the 5 profiles covered by the digital surface model. 

These results and interpretations must be interpreted according to the current limit of the 

RADM. The geophysical imagery have not been compared with reliable ground truth. For 

that, we needed core drills from several place in the site to validate the interpretation. 

Without this, all the interpretation of geophysical properties is hypothetical. These 

interpretations rely on the experience glean during the project. The highly heterogeneous 

nature of the Teesside site does not allow direct transfer from another field site slag heap 

interpretation. In addition, the clustering of geophysical data is powerful, but has limits when 

it does not include other datasets. Finally, the imagery on only 2D profiles limits the 

estimation of volumes. A first estimation has been done in report DI1.3.1. 

  



3. Investment site n°2: Pompey (Fr) 

3.1. Pompey site presentation 

Site description 

The Pompey site is a former tailing pond from the iron and steel complex of Pompey-

Frouard-Custines, located 10 km North from Nancy. The steel complex was active from 1870 

to 1986. It is renowned for producing cast iron and special steels, such as ferromanganese 

(ferro-alloy rich in manganese). The last blast furnace of the Pompey-Frouard-Custines iron 

and steel complex was stopped in 1986. Over time, a forest ecosystem developed on the 

former tailing pond.  

The geological substratum of the former tailing pond consists of the Lias marl formations (at 

181 m NGF), which are covered by alluvium from the two rivers, composed of coarse siliceous 

materials (sands, gravel and pebbles) at the base over 3 to 6 m surmounted by finer materials 

(sands, silts and clays) on 1 to 3 m. These alluvial formations were locally exploited and 

backfilled with waste rock and iron and steel by-products. The depth of the deposits in the 

basin is estimated at around 10 m. The surface of the former pound is estimated to 26 000 

m2, for a total estimated volume of wastes equal to 260 000 m3. 

 
Figure 6 : Map of the Pompey site showing the location of: a) the different geophysical profiling or mapping 

measurements and b) the different sampling locations 

 

Geophysical field acquisition 

On-site work included a two-stage geophysical campaign and sampling campaign (see Figure 

6).  

Geophysical data on site were acquired at two different times: (1) a first electrical profile (P3 

on Figure 6), completed by magnetic susceptibility measurements in the trench pit were 

conducted in November 2020; (2) Measurements on 5 electrical profiles (P1 to P7), 3 seismic 
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profiles (P1, P3 and P5), an electromagnetic map and a magnetic map were led in March 2021 

(see Figure 6). More detailed information on the data acquisition and data processing can be 

found in the site-specific reports of geophysical investigation plan and survey, deliverables 

DI2.1.2 and DI2.2.1. 

The ERT and IP results gave the most interesting and detailed information on the structure 

of the site. These results were used to set the position of the boreholes digged during the 

targeted sampling (see Figure 7). The choice of the location of each boreholes is discussed in 

details in deliverable DI2.2.1. 

 

In this report, we focus on ERT and IP to support further data processing to derive the raw 

material distribution model. 

Targeted sampling 

Two phases of sampling were handled on site: (1) traditional sampling prior to the 

geophysical investigations in fall 2020, within an already-existing pit, from 0 to 2 m deep; (2) 

targeted sampling after the geophysical investigations in the summer 2021 within 4 selected 

boreholes, from 0 to 9 m deep (see Figure 6 b) and Figure 7). Traditional sampling 

investigations on past metallurgical sites and deposits aims at characterizing the nature, 

physical and chemical composition of the wastes at a punctual location. 

Geochemical laboratory analyses 

During the targeted sampling, 45 samples were extracted from 4 different locations. A 

portable X-ray fluorescence spectrometer (pXRF) was used to analyze the chemical 

composition of all the samples. The concentration of 31 chemical elements was estimated 

including Fe, Mn, Zn, Cu and also other lighter metallic elements such as S ... 

For a detailed description of the geochemical data measured in the lab, see the report on 

traditional sampling investigations DI2.1.2, and also the site-specific dataset for geophysical 

characterization (deliverable DI2.2.4). Additionally, the studies on the correlations between 

a) b)

c)

Figure 7: a) Results of the electrical measurements in 

terms of electrical resistivity (in ohm.m); b) Results of 

the electrical measurements in terms of chargeability 

(mV/V); c) Results of the electrical measurements in 

terms of metal factor (1/ohm.m). The purple arrows 

indicate the location of the 4 boreholes FP1 to FP4 



the geochemical lab datasets together, and also with the geophysical field dataset can be 

found in the report corresponding to deliverable DI2.2.3. 

3.2. Methodology for data interpretation 

A similar methodology and data processing than for Investement site n°3 was used to 

interpret the geophysical field data and therefore, to derive the raw materials distribution 

model (see Figure 12). The 4 steps with their results are detailed in section 3.3. 

3.3. Raw materials and pollution distribution model 

Step 1: Creation of the field/lab dataset 

In the first step of the methodology, we integrate the field geophysical data (collocated with 

the samples) and the geochemical lab measurements to carry out a multivariate statistical 

analysis (see deliverable DI2.2.3).  

Step 2: Geostatistical identification of correlations 

Two different statistical analysis were used to identify correlations between: (1) the chemical 

elements, and (2) the chemical elements and the geophysical parameters.  

The first used was the Pearson’s correlation coefficient analysis. It allows correlating 

variables 2-by-2. It is interesting because it shows positive and negative correlations. 

However, it is not very well suited to analyze datasets with a lot of different variables, such 

as our dataset (31 variables for the chemical elements alone). 

The second one used was the principal components analysis (PCA). It presents the advantage 

of reducing the number of dimensions considered in the correlation analysis. It allows 

identifying clusters both for the variables (= chemical elements and geophysical parameters) 

projected on the new calculated dimensions (principal components or PCs), and for the 

individuals (= samples). 

Using PCA to link the geophysical parameters to specific chemical elements was not 

successful. Indeed, the geophysical parameters contributed to independent PCs. We tried to 

compare geophysical field data to laboratory geochemical analysis. The lack of correlation 

might come from an upscaling/downscaling bias. 

We thus decided to use the PCA analysis on the chemical elements alone to distinguish layers 

with various compositions, and link these layers to geophysical parameters variations. 

 Step 3: Definition of clusters 

Using the PCA on the 31 chemical elements studied, we were able to identify cluster of 

variables correlated with each other. We splitted the variables into 3 different clusters 

depending on their contributions to the calculated PCs. We then linked these clusters with 

groups identified within the individual analysis: group A corresponding to samples taken at 

the lowest altitudes, and group B corresponding to samples taken at medium altitudes, 

within the settling pond. Utterly, the geochemical dataset could be splitted into 4 clusters. 



Their interpretation in terms of chemical composition, corresponding geophysical 

parameters variations and final interpretation can be found in Table 1. 

Table 1: Summary of the observations made for each layers of materials, based on the cluster selection 

Altitudes [m] Cluster n° 
Chemical 

composition 

Geophysical 
parameter 
variations 

Interpretation 

200 – 196 4 scattered 
- High rho 
- Average M 
- Low MF 

Anthropic wastes 
placed after the 

closure of the settling 
pond 

198 – 194 1 

Main 
contributions: 
Zn, Cu and 

Pb, Mn 

Transition zone: 

- Decrease of 
rho 

- Scattered M 
- Increase of MF 

Settling pond layer 
n°2 

195 – 191 2 
Main 

contribution: 
Fe 

- Low rho 
- Scattered M 
- High MF 

Settling pond layer 
n°1 

191 –187 3 
Main 

contributions: 
Si and K 

- Low rho 
(slightly 
increasing) 

- Scattered M 
(decreasing) 

- High MF 
(slightly 
decreasing) 

Natural alluvia with 
high ionic strength 

electrolyte? 

 

Step 4: field scale probabilistic classification 

Based on the previously defined clusters at the borehole locations, we carried out a 

probabilistic classification of the field data (inverted models of resistivity and chargeability). 

Details on the probabilistic approach used can be found in part 4.2.  

The results of step 4 are shown in Figure 8, where the probabilistic classification and the 

associated probability of occurrence for each cluster are presented. A high probability of 

occurrence is represented in red and a low probability in blue. For each cells of each profile, 

we then attribute a cluster number, corresponding to the maximum probability of 

occurrence. 



 

Figure 8 : Probability of occurrence of the 4 clusters estimated in step 3 

Figure 9 defines the raw materials distribution model for the Pompey site. Most of the 

material correspond to cluster 3, which is he natural alluvia in which the settling pond was 

installed. Two layers corresponding to the settling pond material were identified (cluster n°1 

and 2). The lateral north and south boundaries of these layers could be determined 

qualitatively with the electrical resistivity results. They are not as well defined with the 

geostatistical analysis.  However, their vertical limit can be very well identified in Figure 9. 

Cluster n°4 corresponds to a layer of anthropic wastes. Their localization in Figure 9 

corresponds to topographic heights, which is very realistic.  

Cluster 3: natural alluvia Cluster 4: Anthropic wastes

Cluster 1: settling pond – layer n°2 Cluster 2: settling pond – layer n°1

Probability of occurence



 

Figure 9 : Maximum of probability for each of the 4 clusters estimated in step 3 

 

Because the geophysical measurements are only 2D, an estimation of the volumes for each 

cluster would need to interpolate the layers over the entire studied area. This result couldn’t 

be achieved during this study, but would be interesting to go further in the quantitative 

approach. Laboratory geophysical dataset as well as mineralogical analysis would also be a 

good addition to go further in the recovery potential of the Pompey site. 
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4. Investment site n°3: Duferco (Be) 

4.1. Duferco site presentation 

Site description 

The site of Duferco – La Louvière (Wallonia, Belgium) is a former iron factory whose activities 

date back to 1850 and production of steel was carried out until the end of the 20th century. 

The factory is composed of several zones (see Fig. 10) where different activities were 

developed, e.g., coking plant, blast furnaces and tailings. In this contribution we focused on 

the slag heap, which according to the historical studies it is mainly composed of raw 

materials and by-products of the iron/steel making activities although heterogeneous waste 

is likely to be present (e.g., scrap metal, wood, refractories). More information can be found 

in the site-specific report that summarizes all available historical data, deliverable DI3.1.1. 

In terms of geology, most of the slag heap is underlain by alluvium from the Thiriau stream. 

These quaternary deposits, which can be up to 8 to 10 meters thick, are composed of 

alternating sandy and clayey layers with local gravel content. Parts of the slag heap may also 

lie on the Houiller formation made of shale, sandstone and coal. 

 

Figure 10: Aerial view of the Duferco site with the delimitation of several activity zones. In this contribution we focused 

on the slag heap delineated in green solid lines. 

Geophysical field acquisition and targeted sampling  

We investigated the slag heap using time-domain electrical resistivity tomography (ERT) and 

induced polarization (IP) methods. Data were acquired with a Terrameter LS system from 

ABEM. In the white slag heap, 4 2D profiles were deployed, each containing 64 stainless steel 

electrodes spaced by 2 m. Data acquisition was carried out simultaneously on combinations 

of two profiles and inline and crossline measurements were collected to obtain a 3D model. 

More detailed information on the data acquisition and data processing can be found in the 



site-specific reports of geophysical investigation plan and survey, deliverables DI3.1.2 and 

DI3.2. 

Based on the geophysical results, we designed a sampling survey composed of pits 

excavations at 8 locations in the slag heap and within the geophysical acquisition domain, 

and samples were taken at depths of 1, 3 and 5 m. 

Figure 11 shows the final 3D resistivity and chargeability models together with the electrodes 

position and sampling location. We use the relative cumulative sensitivity to assess the 

inverted models, e.g., Caterina et al. (2013). In general, the sensitivity of an inverted model 

decreases with depth. The cross-sections presented in Figure 11 include a sensitivity 

threshold to clip out model cells that might not be reliable.  

 

Figure 11: 3D resistivity and chargeability models shown as several cross-sections around the Y axis. The electrodes 

used in the acquisition are shown on the ground surface of the heap as small dots. Large spheres represent the 

location of the samples. 

Geophysical laboratory measurements and geochemical analyses 

We used the geophysical methods of time-domain ERT and IP as well as spectral induced 

polarization (SIP). In this report, we focus on ERT and IP to support further data processing 

to derive the raw material distribution model.  

Resistivity and chargeability measurements were carried out in all the samples using 

columns of 1.5 dm3 (0.08 m ø X 0.3 m) using a Terrameter LS system from ABEM using 4 

electrodes similar to a Wenner array. Electrical current was injected for 2 s (delay of 0.8 s and 

acquisition of 1.2 s) and the voltage decay was measured during 1.86 s after the current was 

switched off. Geochemical investigations were conducted in the same set of samples. The 

samples were studied through X-ray fluorescence (XRF) analyses of major elements such as 

Fe, Mg, Al and Zn. Measurements of particle size distribution were also carried out.  



For a detailed description of the geophysical data measured in the lab, see the report on site-

specific dataset for geophysical characterization, deliverable DI3.2.4. Additionally, the studies 

on the correlations between the geochemical and geophysical lab data can be found in the 

report corresponding to deliverable DI3.2.3. 

4.2. Methodology for data interpretation  

In this subsection, we describe the methodology and data processing we used to interpret 

the geophysical field data and therefore, to derive the raw materials distribution model, see 

Figure 12. 

 

Figure 12. Methodology to derive the raw materials distribution model. In each step we indicate whether the data is 

from laboratory or field measurements or both. 

In the first step of the methodology, we integrate the laboratory and field geophysical data 

(collocated with the samples1) and the geochemical lab measurements to carry out a 

multivariate statistical analysis (see deliverable DI3.2.3). We study linear correlations 

between pairs of previously standardized data using the average content of chemical 

elements constituting all the samples and the geophysical variables measured in the lab and 

in the field, i.e., chargeability, resistivity (or its inverse the electrical conductivity).  

 

As we identified that both chargeability and the electrical conductivity were able to resolve 

variations of Fe, Mn and Si (which were the elements of interest with higher concentrations), 

we focused on these variables (lab data) in the second step. The objective of the second step 

is therefore to identify groups of samples with different chemical composition and 

geophysical signatures. 

 

 

1 The geophysical field data collocated with the samples were derived from the average of 

the cells from the inverted models computed within a volume of dimensions 3 m × 3 m × 1.6 

m centered at the positions where the samples were collected. 

 



Lastly, based on the previously defined clusters or groups, we carried out a probabilistic 

classification of the field data (inverted models of resistivity and chargeability). To this aim, 

we first fitted the resistivity and chargeability field data (collocated with the samples) using a 

2d kernel density estimator function for each group. Then we computed the joint conditional 

probabilities in the whole field acquisition domain for each group. We then compared these 

probability values and selected the group corresponding to the largest probability to classify 

the whole field data in terms of the different groups, i.e., raw materials and distribution 

model.  Therefore, in addition to the classification model we also have the model with 

associated probability values or a measure of the classification uncertainty.  

 

4.3. Raw materials distribution model 

Figure 13 presents the results of step 2 of the former methodology. It presents the cross-

plots of the chargeability (𝐶lab) vs the conductivity (σlab) values measured in the laboratory for 

all the samples. The colorbar represents the average concentrations of Mn, Fe and Si (from 

left to right). We also show the identified geophysical-geochemical based groups of samples, 

illustrating them in the cross-plot with the average concentration of Mn, but detailed 

grouping is described in Table 2. Note that we based the probabilistic classification in terms 

of the groups or clusters identified here.  

 

 

 

Figure 13. Cross-plots of the chargeability vs the conductivity (inverse of the resistivity) measured in the 

laboratory. Colorbars represent, from left to right, the average content of Mn, Fe and Si. 

Table 2 describes the samples that correspond to each group, as well as a value range of 

conductivity values (inverse of resistivity) and a value range of chargeability values. We also 

describe what are the dominant elements that could be of potential interest for recovery in 

each group. Finally, we include a column with the amount of metallic content per group 

(mostly dominated by Fe and Mn).  

 

The results of step 3 are shown in Figure 14 where the probabilistic classification and the 

associated probability values are presented. The models show several sections across the Y 

and X axis but they are 3D models covering most of the slag heap.  



Table 2. Samples identified in each group from chemical analysis and geophysical-lab measurements. 

Group 

identifier 

Samples σlab 𝐶lab Group 

composition 

Metallic 

concentration2 

Group 1  S04_5, S05_3 < 20 mS/m < 20 mV/V Si-Ti-K Low 

Group 2 S02_3, S02_5, 

S06_1, S06_3, 

S06_5 

> 20 mS/m > 100 mV/V Fe-Mn-V-Cr High 

Group 3 S01_1, S01_3, 

S01_5, S03_1, 

S03_3, S03_5, 

S04_1, S04_3, 

S07_1, S07_3, 

S07_5, S08_5 

> 14 mV/V < 90 mV/V 

> 20 mV/V 

Fe-Mn-V-Cr Low-

intermediate 

Group 4 S02_1, S08_1, 

S08_3 

< 25 mS/m > 70 mV/V Fe-Mn-V-Cr Intermediate- 

large 

 

 

Figure 14. A) Classification of the field data and associated B) joint conditional probability. Transparency 

along the sections represent the resulting probability values. Both images integrate the sensitivity 

threshold (>10-5.5). 

Figure 14 defines the raw materials distribution model, where most of the material 

correspond to Group 3 while the materials corresponding to Group 2 represent the smallest 

 

2 Largely based on Mn and Fe. 



proportion of the slags. Based on this model we also estimate the volumes of each group, 

the results are shown in Figure 15. The estimated volumes for Groups 1-4 are respectively: 

4000 m3 ± 12%, 23 000 m3 ± 21%, 189 000 m3 ± 12% and 59 400 m3 ± 19%. The uncertainty 

ranges are derived from including the resulting probability values of the classification, i.e., 

volumes are estimated considering the probabilities (weighted volumes) and not considering 

the probabilities, then both estimations are compared.  

 

 

Figure 15.  Volumes of each group. 

Group 1 presents the smallest volume of material and according to its composition, it has 

the smallest metallic concentration. This group may be largely composed of inert waste. The 

materials of Group 2 present the largest metallic concentration, and it represents the most 

interesting volume for potential recovery. The volume of Group 3 represents most of the 

material of the slag heap and the materials are distributed across the entire volume of the 

heap. Lastly the materials of Group 4 are largely distributed towards the east of the heap 

and although the properties of this group are very similar to group 3, there is a larger 

concentration of Mn in group 4.  

Preliminary conclusions  

The use of a probabilistic classification of the field data allows to derive a raw materials 

distribution model that includes the uncertainty of the data interpretation and it is able to 

integrate this uncertainty in the estimation of volumes. This can be useful information to 

assess potential of resource recovery and for the management of the site in general. Note 

that this methodology can be adapted to conduct interpretations of field data in terms of 

more detailed or specialized chemical studies, e.g., mineralogical analysis.  

 



5. General conclusions 

This report illustrates three different approaches that can be followed to derive a more 

quantitative interpretation of geophysical data measured in the field through RADM models. 

These are conceptual models represented in terms of materials of interest, different 

chemical composition, metallic content, etc. The approaches showed here were adapted 

according to site-specific conditions, geophysical methods applied in the site and available 

sampling. As illustrated with the first site, when sampling within the deposits is not available, 

an approach of unsupervised learning can be conducted, i.e., clustering. This allows to 

identify groups or clusters in the field data with different geophysical properties that could 

be indicators of materials of different geochemical composition. On the other hand, when 

excavations are conducted through trial pits or boreholes and sampling can be carried out 

at larger depths, geophysical and geochemical measurements can also be made in the 

samples. In this case the objective is to calibrate the geophysical data (either from the lab or 

from the field) with the geochemical measurements. This calibration can be extrapolated 

into the whole model domain of the field data as illustrated with the approaches presented 

for pilot sites two and three. The latter approaches are based on a probabilistic classification 

of the field data, that allows to include the uncertainty in the interpretation and in the 

subsequent volume estimation. In general, geophysical imaging represents a suitable tool to 

derive raw material distribution models in PMSD and estimate volumes. Yet, to mitigate the 

ambiguity that geophysical surface methods may pose, calibration with ground truth data is 

needed.  


